首页> 外文OA文献 >Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS_2 and WS_2
【2h】

Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS_2 and WS_2

机译:长寿命纳秒自旋弛豫和电子自旋相干   单层mos_2和Ws_2

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The recently-discovered monolayer transition metal dichalcogenides (TMDCs)provide a fertile playground to explore new coupled spin-valley physics.Although robust spin and valley degrees of freedom are inferred from polarizedphotoluminescence (PL) experiments, PL timescales are necessarily constrainedby short-lived (3-100ps) electron-hole recombination. Direct probes ofspin/valley polarization dynamics of resident carriers in electron (or hole)doped TMDCs, which may persist long after recombination ceases, are at an earlystage. Here we directly measure the coupled spin-valley dynamics inelectron-doped MoS_2 and WS_2 monolayers using optical Kerr spectroscopy, andunambiguously reveal very long electron spin lifetimes exceeding 3ns at 5K (2-3orders of magnitude longer than typical exciton recombination times). Incontrast with conventional III-V or II-VI semiconductors, spin relaxationaccelerates rapidly in small transverse magnetic fields. Supported by a modelof coupled spin-valley dynamics, these results indicate a novel mechanism ofitinerant electron spin dephasing in the rapidly-fluctuating internalspin-orbit field in TMDCs, driven by fast intervalley scattering. Additionally,a long-lived spin coherence is observed at lower energies, commensurate withlocalized states. These studies provide crucial insight into the physicsunderpinning spin and valley dynamics of resident electrons in atomically-thinTMDCs.
机译:最近发现的单层过渡金属二硫属化合物(TMDC)为探索新的自旋谷物理耦合提供了肥沃的游乐场。尽管从偏振光致发光(PL)实验推断出强大的自旋和谷自由度,但PL时标必然受到寿命短( 3-100ps)电子-空穴复合。电子(或空穴)掺杂的TMDC中常驻载子的自旋/谷极化动力学的直接探针处于早期阶段,这种探针可能在重组停止后持续很长时间。在这里,我们使用光学克尔光谱直接测量电子掺杂的MoS_2和WS_2单层中耦合的自旋谷动力学,并且清楚地揭示了非常长的电子自旋寿命,在5K时超过3ns(比典型的激子复合时间长2-3个数量级)。与常规III-V或II-VI半导体相反,自旋弛豫在较小的横向磁场中迅速加速。这些结果得到耦合的自旋谷动力学模型的支持,表明在快速DC的快速起伏的内部自旋轨道场中,由快速的intervalley散射所驱动的电子电子自旋移相的新机制。另外,在较低的能量下观察到了长寿命的自旋相干,与局部状态相对应。这些研究为原子稀薄TMDC中驻留电子的自旋和谷动力的物理基础提供了重要的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号